人工智能,如何妙笔“生”画******
核心阅读
输入一段话,“绘”出一幅画——人工智能的绘画本领,吸引众多职业画师和零基础用户尝鲜。人工智能绘画的本质是计算,接受“语言描述”指令后根据自身的理解还原出图像。未来,人工智能技术应用于艺术创作等领域,还要注意防范潜在风险,让技术进步更好地造福社会。
不用画笔、颜料,输入一段描述性文字,计算机就能自动解析,生成相应的画作。2022世界人工智能大会上,人工智能绘画的展示令观众惊叹。
一些过去专属于人类创作的领域,比如绘画、书法、写作、作曲,如今人工智能也已开始涉足。人工智能是如何绘画的?当前沿技术与艺术相遇,将碰撞出怎样的火花?在内容、版权等方面又是否存在问题?
从文本到图像,人工智能绘画本质是计算
人工智能绘画是一个从文本到图像的生成过程,输入一段话,生成一幅画,本质是计算。简要地说,计算机通过大量学习,能识别特定图片元素和文本之间的关联。同理,人工智能程序在收到“语言描述”指令后,可以根据自身的算法还原出图像。
设定计算机程序作画的想法由来已久。早在20世纪70年代,就有艺术家开发了操作机械臂的电脑程序,让机械臂按照指令在画纸上作画。近些年,人工智能技术日新月异,科研人员尝试设计自动作图的计算机程序。但过去很长一段时间,人工智能“画”出的作品普遍不够好,往往只是一些模糊的图像元素的组合,还称不上是完整的画。
今年以来,人工智能画技迅速“进化”。谈及技术突破原因,百度文心一格总架构师肖欣延认为,这是预训练大模型的兴起、大数据的训练和扩散模型的出现3方面共同作用的结果。
具体来说,预训练大模型增强了人工智能的通用性,成为人工智能技术及应用的新基座;大数据的训练中,通过在众多高性能GPU(图形处理器)算力资源中进行并行学习,计算机能够在短时间内完成大量的数据学习。近年来,几乎所有人工智能的技术发展都受益于这两方面的进展。而对人工智能绘画来说,扩散模型的出现至关重要。
扩散模型的原理是,通过人为逐步添加噪声,让图像逐渐变“模糊”,再不断学习去噪过程,如此人工智能就能从完全是噪声的图片中逐渐还原出清晰的图片,即“画”出图像。
“这一过程与人类学习相似。通常,人们学画从临摹开始,机器也是如此。它最初生成的图像可能很模糊,但计算机会不断修正,从而输出越来越清楚、层次越来越丰富的图像。”肖欣延说。
扩散模型让人工智能绘画技术实现跨越,不仅作画质量快速提升,生成时间也缩短到几秒钟。
众多用户尝鲜,大量应用加速“画技”进化
汤林杰是某互联网公司的运营人员。工作中,他需要借助一些图片来丰富文案,而网络上找到合适的配图并不容易。今年10月,了解人工智能绘画程序后,他尝试自己“画”图。现在,人工智能绘画工具已经是他工作的重要辅助。
随着算法模型对公众开放以及训练数据成本的下降,人工智能绘画门槛越来越低,一些简易化操作平台在国内外兴起。如今,不仅一些职业插画师尝试用人工智能绘画程序辅助作画、激发灵感,许多没有绘画基础的用户也开始尝鲜,并“晒”在社交平台上。
大量需求的涌现也加速了技术的更新迭代。“用人工智能绘画的人越多,算法就越能理解输入的描述文本,画作质量就越高。”肖欣延表示,当前人工智能绘画水平与今年初相比,已经有很大进步。
不过,目前的人工智能绘画技术并不完美。首先,可控性仍然不高,即计算机不能很好理解人类指令的含义,即便是输入“画两个苹果,左边红色,右边绿色”这样的简单描述,生成的图像也可能有很大偏差;其次,细节呈现能力还不够。比如,对空间、透视和光影的刻画就很不如意。不少人工智能渲染出的画作,初看上去惊艳,认真观察问题却不少。
但肖欣延认为,人工智能绘画在技法上的缺陷未来有望得到弥补。比如,基于跨模态大模型和强大的深度学习框架,百度开发的技术一定程度上已经缓解这些问题。此外,未来人工智能不仅能作画,还能根据文本描述生成视频,并直接配上解说文字,“可以把视频生成看作是维度更高的绘画,从技术层面看,这是可以实现的。”
防范潜在风险,守住法律和伦理底线
人工智能进入绘画领域,计算机会取代人类画师吗?
在肖欣延看来,好的绘画与构图、设计语言、视觉情绪息息相关,即使人人都可以用人工智能技术作画,但通常只有高水平的画师才能制作出优秀的人工智能绘画作品,“人工智能只是作画的辅助工具”。此外,虽然有的人工智能绘画语言娴熟,也包含细腻的情感,但并不意味着机器有意识、情感,它不过是学过类似的作品,又恰好呈现出来了。“优秀的艺术作品往往是人的思想的投射,目前机器并没有真正具备思考能力。”肖欣延说。
不少业内人士认为,不妨以开放的心态拥抱人工智能绘画,接受新事物。可以预想,将来绘画中一些繁琐、重复性的工作可能由计算机完成,创作者能腾出更多时间去构思想法与创意,调整构图、色彩、光影氛围等。
“人工智能可能会激发绘画创造的活力。”肖欣延表示,20世纪前后,照相技术让传统肖像画失去市场,促使一些画家向非写实方向创新。与人工智能技术融合,或许能激发画家创作出别开生面的作品。
不过,由于人工智能绘画发展刚刚起步,技术发展也引发关于版权、内容把控等问题的争议。比如,有人认为,未经授权人工智能画作模仿原画的内容、构图和风格等,侵犯了原作者的版权,有违法嫌疑。也有人认为,“机器学习”过程是一种类人化的创作行为,同样体现了创造者的思想和劳动,应当获得版权保护。此外,还有人担忧,人工智能绘画技术若被滥用,可能滋生暴力等令人不适的图像。面对新技术发展,有必要前瞻潜在的风险,只有守住法律和伦理底线,技术进步才能更好地造福社会。
不只是绘画,写作、作曲、生成短片,人工智能日益强大的深度学习能力,让它与不同艺术门类发生着奇妙的碰撞。展望未来,业界专家认为,人工智能与艺术融合,一方面会降低一些艺术门类的创造门槛,让更多人参与到当代的审美创造中来;另一方面新技术会带来新的审美风格,人们或许能从中扩展对自身和世界的认识。
记者 喻思南
报告显示:超六成受访者认为应强制企业公开算法******
光明网讯(记者 李政葳)“当前,国内对于算法治理的基本思路和框架都是清晰的,而分级分类精准治理的模式应当可以解决如何落实的问题。”在日前举办的“2022啄木鸟数据治理论坛”上,谈及算法治理的现状,清华大学人工智能国际治理研究院副院长、人工智能治理研究中心主任梁正表示,算法分级分类本身不是目标,而是要针对不同风险场景配备不同监管规则。
论坛由南都个人信息保护研究中心联合清华大学人工智能国际治理研究院、人工智能治理研究中心(清华大学)主办。其间,南都个人信息保护研究中心发布《算法应用与治理观察报告》《个人信息安全年度报告》《平台经济反垄断观察报告》。
记者了解到,《算法应用与治理观察报告(2022)》,梳理了国内外的多项法规,结合热点事件及应用场景呈现了算法治理现状,并发布千份算法治理调查问卷了解公众对算法公开和算法治理的了解程度和基本态度,最后基于多方调查分析,给出了当前算法趋势观察以及未来治理方向建议。
报告发现,目前国内算法治理仍处于早期探索阶段,企业的算法公开主要依靠官方的互联网信息服务算法备案系统,或在舆情事件发生之后。调查问卷结果显示,近半受访者承认算法让自己的使用体验更好,但仅一成受访者认为企业算法公开做得很好,逾六成的受访者称曾遭遇“大数据杀熟”;超过六成的受访者认为应该强制企业公开算法。
“在数据、算法方面治理政策进展显著,在平台与应用方面的政策和落地尚需加紧。”中国科学院人工智能伦理与治理研究中心主任、国家新一代人工智能治理专委会委员曾毅认为,目前人工智能伦理有三个相当紧迫的问题需要被正视:首先,人工智能应当被适度使用;其次,目前人工智能服务知情同意落地艰难,被迫知情同意普遍存在;最后,目前用户数据的授权撤销在人工智能服务中存在巨大挑战,需要监管和更高层的网络服务提供方联合提出更合理的政策与解决方案。
针对日前发布的《互联网信息服务深度合成管理规定》,中国政法大学数据法治研究院教授张凌寒表示,从算法治理角度来说,深度合成管理规定与之前的算法推荐管理规定的思路有所不同,前者采用了一种“三位一体由的数据与技术规范。
具体来讲,由于深度合成技术的门槛较高,技术支持者也被纳入了监管范围内。比如,深度合成服务提供者提供智能对话、合成人声、人脸生成、沉浸式拟真场景等服务,应当进行显著标识,这就将更重的责任落在了服务提供者身上。
中国社科院科技和社会研究中心主任段伟文提到,算法治理需要构建可信任的算法认知,而这需要产业和消费者的共同努力:产业要努力提升算法精准性、透明度,减少偏见,减少歧视;消费者则需要提高数字素养,提升算法意识,加强在人机互动中自主性、控制感和协同意识。
(文图:赵筱尘 巫邓炎)